Laboratory Measurements of Temperature Dependent ¹³C and D Kinetic Isotope Effect in the Oxidation of CH₄ by O(¹D) and OH Thinh Q. Bui¹, <u>Linhan Shen</u>¹, Pin Chen², Mitchio Okumura¹ ¹California Institute of Technology, Pasadena, California ²Jet Propulsion Laboratory, Pasadena, California In this work, we utilized the frequency stabilized cavity ringdown spectroscopy (FS-CRDS) technique to study the temperature dependence of kinetic isotope effect (KIE) during the oxidation of methane by $O(^1D)$ and OH radicals. We demonstrated a dual wavelength technique by coupling two orthogonally polarized CW lasers into a ringdown cavity simultaneously to measure the full wavelength range of 1.45 to 1.65 um. The spectrometer is capable of measuring major isotopologues of methane (12 CH₄, 13 CH₄, and 12 CH₃D) of enriched samples to very high precision (D < 0.03% and 13 C < 0.01%). The photochemistry was initiated by photolyzing a mixture of N₂O, isotope enriched methane, H₂, and He at 193 nm in a temperature controlled cell between 155 K and 300 K. The concentrations of all major methane isotopologues before and after photolysis were analyzed using a frequency stabilized cavity ringdown (FS-CRDS) spectrometer. Our measurements observed D-KIE(155 K) = 1.133(20), and 13 C-KIE(115 K) = 1.149(22).